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ABSTRACT 

     In this paper, we investigate a recursive multiple model tracking
approach similar to the Generalized Pseudo–Bayesian 1 (GPB1) [1]
approach. However, here we consider a continuum of models rather than
the discrete set that is usually implemented in the GPB1 method. By doing
so better models are available to improve tracker performance and solve
the bias problem inherent in most multiple model approaches.

1 Introduction

    In tracking systems, we don’t have precise knowledge of the system model.
For this reason, crude models such as constant velocity, constant acceleration, and
constant turn rate models have been developed. However, to capture scenarios that are
not represented by the given model, much uncertainty is added to the model in the form
of large process noise. To reduce this uncertainty, researchers have implemented
combinations of many different models in multiple model approaches. However, our
research has shown that most designs still require large uncertainties to capture the
wide possibilities of target maneuvers. Consequently, tracking systems tend to ride the
measurements (that is, the estimate error is about the same as the measurements) as
little weight is placed on the model's prediction and much weight is given to the
measurements.

  However, by choosing a set of models that lie upon some continuum of
models (as proposed in this paper) the uncertainty in each model may be reduced,
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allowing the filter to appropriately give more weight to the filters estimate and reducing
the overall estimate error. Further, by having the models densely spaced the system
does not have to interpolate between sparsely spaced models thus improving the
performance when operating between system models. This is one problem that this
paper addresses.

    Another problem we have found with multiple model approaches is due to
“non-symmetry” of the models. For example, suppose we have 3 constant velocity
models with acceleration biases of –1g, 0g, and +1g.  Further suppose that the current
maneuver is .6g. In this situation models 0g and 1g compete and the likelihood of the –-
-1g models are not necessarily zero. Consequently, these models will bias the result
towards the result obtained for the –1g and 0g accelerations. However, by
implementing a continuum of models we maintain symmetry about the true maneuver.
A similar phenomenon was first observed in [2] where a large number of models
compete thus reducing performance as an increased number of models are added. 

Further too few model leave modeling gaps and higher uncertainty. The problem
studied here is to reduce the biases of the IMM constant when compared to the
Stochastic Estimation using a Continuum of Models

2 Algorithm development 

    The continuum-model algorithm derivation is similar to the derivation of the
GPB1 algorithm.  The difference is that the GPB1 processes each of its (finite number
of) models separately, whereas in the continuum-model algorithm the infinite number of
Kalman filter models are evaluated together, taking advantage of an assumed structure
that relates all the models in the continuum.

    In the development that follows, we apply the same procedures used in
developing the GPB1 algorithm except a continuum of models is employed. The steps
follow the development presented in [1].

2.1  Constant position model with velocity bias

    In this continuum-model algorithm derivation we assume knowledge of the
truth model with the exception of the object's time-varying velocity.  The system truth



model is assumed to be a known constant position model with and unknown velocity
bias given as

x(k) = x(k-1) +T vk+ ω(k-1) ω ~ N(0,Q) , T ∈  RI   (1)

z(k) = H x(k)  +  ν(k-1) ν ~ N(0,R) , H ∈  RI  (2)

where ω and ν are zero-mean, Gaussian, white noise and T is the time step between
measurements updates.

    By implementing a continuum of (constant-position with velocity bias) Kalman

filter models whose velocities span across all possible target velocities v ∈ [∞,∞], wek
know that one of the unaccountably infinite numbers of models will match the truth
model exactly.

    We will demonstrate that when propagating the current state estimate (and
associated covariance) through the continuum of Kalman filter models, the state
estimate for a given time-step will remain in the form

x̂(k-1,vk-1|k-1) = a(k-1|k-1) vk-1 + b(k-1|k-1)  (3)

where a(k-1|k-1), b(k-1|k-1)  ∈  RI   are the slope and intercept respectively of the affine
function of vk-1.  Because a(k-1|k-1) and b(k-1|k-1) are independent of vk-1, the form

given in (3) allows us to analytically describe x̂(k-1,vk-1|k-1) through the computation of

a(k-1|k-1) and b(k-1|k-1)  without requiring knowledge of vk-1.  This compact description

allows us to perform state estimation (for the next time-step) through each of the infinite
number of models in the continuum simultaneously, simply by computing a(k|k)and
b(k|k).  Similarities can readily be seen between the form given in (3) and the system
model given in (1).

2.2  Propagation of State Estimate

    Using the standard Kalman filter notation and derivation, we recall that the
propagation of the state estimate from time k-1 to time k applied to the system model
(1) and (2) is



x̂(k,vk|k-1) = x̂(k-1,vk-1 | k-1) + T vk  (4)

where x̂(k-1,vk-1|k-1) is available from the previous time-steps computation.  By letting

a(k | k-1) =  T, (5)

b(k | k-1) = x̂(k-1,vk-1|k-1) (6)

we rewrite (4) as

x̂(k,vk|k-1) =  a(k | k-1) vk + b(k | k-1)  (7)

where the velocity assumed to be in affect on the previous time-step has been
incorporated into b(k|k-1).  Therefore after propagation, the state estimate is still an
affine function of the current velocity bias, vk.

2.3  Update of state estimate

    Recall that a measurement update of the state estimate at time k applied to the
system model is

x̂(k,vk|k) = x̂(k,vk|k-1) + W(k)[z(k)-H x̂(k,vk|k-1)] (8)

and substituting twice using (7) results in

x̂(k,vk|k)= a(k | k-1) [1 - W(k)H] vk
+ b(k | k-1) + W(k) [z(k) - H b(k | k-1)] (9)

where W(k)  is the Kalman gain. Therefore, after measurement update of the state
estimate, it is still an affine function of the velocity bias with slope and intercept

a(k | k) = a(k | k-1) [1 - W(k)H] (10)
b(k | k) = b(k | k-1) + W(k)[z(k) - Hb(k | k-1)] (11)

respectively, yielding the same form assume in (3).  This tells us by induction that if the
initial state estimate is an affine function of the velocity bias then it will always remain so
after propagation and update through the continuum of filters.  Now we show how the
error covariance estimate also retains this affine structure through the propagation and
update steps.



2.4  Propagation and update of error covariance estimate

    Propagation and update of the covariance  P(k-1|k-1)  ∈  RI  is simpler than
that just performed for the state estimate because not only is the covariance
independent of the current velocity (as was a(k-1|k-1) and b(k-1|k-1)) it is independent
of velocity at any time.

    Recall that the propagation of the state error covariance estimate to time k
applied to the system is given by the following:

P(k | k-1) = P(k-1 | k-1) + Q (12)

and the measurement update of the state error covariance at time k is given by

P(k | k) = P(k | k-1) - W(k)2 S(k) (13)

where the innovation covariance at update time is

S(k) = H2 P(k | k-1) + R (14)

and the Kalman Gain is

W(k) = P(k | k-1) H S(k)-1 (15)

= 
P(k | k-1) H

 H2 P(k|k-1) + R
 . (16)

 After update, the state error covariance is given by

P(k | k) = P(k | k-1) - 
(P(k | k-1) H)2

 H2 P(k | k-1) + R
 (17)

which is clearly independent of velocity.

This derivation of the propagation and update of the error covariance estimate tells us
by induction that if the initial error covariance on a continuum of filters is independent of
velocity then it will remain so.  We follow along the same procedure as GPB1 as this
architecture does destroyed constant nature of the state error covariance at some time



k. Hence by induction if covariance is constant (independent of the velocity) then it will
remain so.

2.6  Match filtering

    The likelihood function to the continuum of velocity biases as a function of
the measurement at time k is given by

Λ(k, vk) = p[z(k) | vk, Z(k-1)] ) (18)

= p[z(k) | vk, x̂(k-1,vk-1 | k-1), P(k-1|k-1)] ) (19)

where Z(k) = {z(k), …, z(0)} is the set of all measurement through time k. The best

estimated mean of z(k) using x̂(k-1,vk-1|k-1), P(k-1|k-1)), and the model used to

propagate them, is Hx̂(k,vk | k-1)) giving the Gaussian probability density function.

Λ(k, vk) = 
1

2πS(k)
 exp








-
[z(k)-Hx̂(k,vk|k-1)]2

2S(k)  (20)

= 
1

2πS(k)
 exp








-
[z(k)-Ha(k|k-1)vk - Hb(k|k-1)]2

2S(k)  (21)

2.7  Probability update for v k

    The following is a recursion that updates the probability density function for a
target-exhibiting behavior from a model in the continuum with velocity vk

µ(vk) = p[vk | Z(k)] (22)

= p[vk | z(k), Z(k-1)]  (23)

= 
1
c p[z(k) | vk,Z(k-1)] p[vk | Z(k-1)]  (24)

= 
1
c Λ(k, vk) ⌡⌠

-∞

 ∞
  p[vk | vk-1, Z(k-1)] p[vk-1| Z(k-1)] dvk-1 (25)

where the last equation makes use of the total probability theorem and c is the

normalization constant.  Let the probability µ(vk-1) = p[vk-1| Z(k-1)] be given by the

following Gaussian probability density function



µ(vk-1) =  
1

2πσµ(k-1)
 exp







-

[vk-1-mµ(k-1)]2

2σ
2
 µ(k-1)

  (26)

where mµ(k-1)  and σµ(k-1)  are the mean and variance respectively of the probably

density function for vk-1. Also, let the transition probability p[vk | vk-1, Z(k-1)]  to be a

Gaussian with a probability density given by

p[vk | vk-1, Z(k-1)]  =  
1

2πσp
 exp







-

[vk - vk-1]2

2σ
2
p

  (27)

where σp is the covariance associated with model transitions.  Substituting Equations

(26) and (27) into (25) yields

µ(vk) = 
1
c1

 Λ(k, vk) 

⌡

⌠

-∞

 ∞

   exp







-

[vk - vk-1]2

2σ
2
p

 exp







-

[vk-1-mµ(k-1)]2

2σ
2
µ(k-1)

  dvk-1 (28)

= 
1
c1

 Λ(k, vk) 

⌡

⌠

-∞

 ∞

   exp







-

[vk - vk-1]2

2σ
2
p

 -
[vk-1-mµ(k-1)]2

2σ
2
µ(k-1)

  dvk-1 (29)

    = 
1
c1

 Λ(k, vk) 

⌡


⌠

-∞

 ∞

   exp











-
[v

2
k - 2 vk-1 vk + v

2
k-1]

2σ
2
p

 -
[v

2
k-1- 2 vk-1 mµ(k-1) + m

2
µ(k-1)]

2σ
2
µ(k-1)

  dvk-1 

(30)

= 
1
c1

 Λ(k, vk) exp











-
v
2
k

2σ2
p

  - 
m

2
µ(k-1)

2σ
2
µ(k-1)

 

⌡


⌠

-∞

 ∞

   exp











-
[- 2 vk-1 vk + v

2
k-1]

2σ2
p

 -
[v

2
k-1 - 2 vk-1 mµ(k-1)]

2σ
2
µ(k-1)

  dvk-1

(31)



= 
1
c1

 Λ(k, vk) exp





-

v
2
k

2σ
2
p

 - 
m

2
µ(k-1)

2σ
2
µ(k-1)

 

⌡
⌠

-∞

 ∞

   exp





- 





σ

2
p + σ

2
 µ(k-1)

2σ
2
p σ

2
 µ(k-1)

 v
2
k-1 + 





2 mµ(k-1) σ

2
p + 2 vk σ

2
µ(k-1)

2 σ
2
p σ

2
 µ(k-1)

 vk-1   dvk-1

(32)
 where c1  is the normalizing constant. From [3] we find

⌡⌠
-∞

 ∞
 exp[ ]-α2 x2 + βx  dx = 

π
α

 exp






β2

4α2 , α>0 (33)

Let

α2 =  





σ

2
p + σ

2
 µ(k-1)

2σ
2
p σ

2
 µ(k-1)

  (34)

β = 





2 mµ(k-1) σ

2
p + 2 vk σ

2
µ(k-1)

2 σ
2
p σ

2
 µ(k-1)

  (35)

Using Equation (33)-(35) and substituting Equation
(21), we find that Equation (32) becomes

µ(vk) = 
1
c5

 exp













-




vk - 







H a(k|k-1) (z(k) -Hb(k|k-1)) 



σ

2
p +  σ

2
µ(k-1)   + 2 mµ(k-1) S(k)  

 





H2 a2(k|k-1) 



σ

2
p +  σ

2
µ(k-1)   + S(k) 

 
2

 

2 
S(k) 



σ

2
p +  σ

2
µ(k-1)

 





H2 a2(k|k-1) 



σ

2
p +  σ

2
µ(k-1)   + S(k) 

(36)

where c5 is the normalizing constant. Proof of Equation (36) is given in Appendix 1.

Note by induction if the initial probability µ(vk)  is Gaussian it will remain Gaussian with

a mean and variance propagated by the following equations

mµ(k) = 











H a(k|k-1) (z(k) -Hb(k|k-1)) 



σ

2
p +  σ

2
µ(k-1)   + 2 mµ(k-1) S(k)  

 



H2 a2(k|k-1) 



σ

2
p +  σ

2
µ(k-1)   + S(k) 

 (37)



σ
2
µ(k)  = 





S(k) 



σ

2
p +  σ

2
µ(k-1)

 





H2 a2(k|k-1) 



σ

2
p +  σ

2
µ(k-1)   + S(k)  

(38)

respectively. Note that mµ(k) is the estimate of the process input vk

2.8  Overall error state and error covariance estimates

 The combined state estimate is obtained by the following

x̂(k,vk-1|k) =   ⌡⌠

-∞

∞
 x̂(k,vk-1|k)  m(vk) dvk (39)

=   ⌡⌠
-∞

∞
 (a(k|k) vk + b(k|k)) m (vk) dvk (40)

= a(k|k) mµ(k)+ b(k|k))  (41)

The combined covariance is obtained by a Gaussian Mixture of a continuum of
probability density function, i.e. from [1, page 48] we find

P
^
(k| k) = ⌡⌠

-∞

∞
  P(k|k) m(vk) dvk + ⌡⌠

-∞

∞
x̂(k,vk|k) m(vk) dvk  - x̂2(k| k)   (42)

= P(k|k) + ⌡⌠
-∞

∞
  (a(k|k) vk +b(k|k)) 2   m(vk) dvk  - x̂2(k| k)   (43)

= P(k|k) + ⌡⌠

-∞

∞

  a2(k|k) v
2
k m(vk) dvk + 2 a(k|k) b(k|k) mµ(k) + b2 (k|k)  - x̂2(k| k)   (44)

= P(k|k) + ⌡⌠
-∞

∞
  a2(k|k) (vk- mµ(k))2 m(vk) dvk + a2(k|k)) ⌡⌠

-∞

∞

 (2 mµ(k) vk -  m
2
µ(k)) m(vk) dvk + 

2 a(k|k) b(k|k) mµ(k) + b2 (k|k)  - x̂2(k| k)  (45)



= P(k|k) + a2(k|k) σ
2
µ(k) + a2(k|k))m

2
µ(k) + 2 a(k|k) b(k|k) mµ(k) + b2 (k|k)  - x̂2(k| k)  

(46)
3 Simulation Results 

     In this section, we present an empirical analysis of the continuum model
Kalman filter illustrating its superior qualities over a conventional IMM algorithm.

    Here the truth data is the same for both algorithms. Everything such as noise
covariance, sample time, and constant position with velocity bias are set the same for
both algorithms to provide a fair comparison. The IMM was implemented with three
model with differing biases, namely [-10 0 10].

    Consider the results shown in Figures 1-2.. It is clear that the continuum
model Kalman filter outperforms the IMM by a factor of 1.6:.25. This fact is
demonstrated further in Table 1 showing the RMS error for both algorithms.

4 Concluding Remarks 

   In this paper, we investigated a recursive multiple model tracking approach
similar to the Generalized Pseudo–Bayesian 1 (GPB1) [1] approach. Here we consider
a continuum of models rather than the discrete set that is usually implemented in the
GPB1 method. By doing so we have provided better models to improve tracker
performance and solved the bias problem inherent in most multiple model approaches.

    Empirical results have shown conclusively that the continuum model Kalman
filter is capable of out performing the IMM, especially while operation the IMM between
fixed models velocities.

   By defining a continuum of models we avoid problems frequently associated
with multiple model techniques that use a finite number of models.

Appendix 1 – Proof of Equation 36 

    Using Equation (34)-(36), we find that Equation (33) becomes



µ(vk) = 
1
c2

 Λ(k, vk) exp











-
v
2
k

2σ
2
p

  - 
m

2
µ(k-1)

2σ
2
µ(k-1)

 exp

















2mµ(k-1) σ

2
p + 2vk σ

2
µ(k-1)

2σ
2
p σ

2
 µ(k-1)

 

2

 







2σ

2
p σ

2
 µ(k-1)

 4 



σ

2
p +  σ

2
µ(k-1)

(47)

= 
1
c2

 Λ(k,vk) exp





-

v
2
k

2σ
2
p

   - 
m

2
µ(k-1)

2σ
2
µ(k-1)

 exp









mµ(k-1) σ

2
p + vk σ

2
µ(k-1)  2

 2σ
2
p σ

2
 µ(k-1) 



σ

2
p +  σ

2
µ(k-1)   

 (48)

= 
1
c2

 Λ(k,vk) exp





-

v
2
k

2σ
2
p

   - 
m

2
µ(k-1)

2σ
2
µ(k-1)

 exp





σ

4
µ(k-1)  v

2
k + 2 σ

2
p σ

2
µ(k-1) mµ(k-1) vk + m

2
µ(k-1) σ

4
p 

 2σ
2
p σ

2
 µ(k-1) ( )σ

2
p +  σ

2
µ(k-1)   

 (49)

= 
1
c2

 Λ(k,vk) exp





 - σ

2
p σ

2
µ(k-1)  v

2
k + 2 σ

2
p σ

2
µ(k-1) mµ(k-1) vk - m

2
µ(k-1) σ

2
p σ

2
 µ(k-1)

 2σ
2
p σ

2
 µ(k-1) 



σ

2
p +  σ

2
µ(k-1)   

 

(50)

= 
1
c2

 Λ(k,vk) exp





-

 v
2
k - 2 mµ(k-1) vk + m

2
µ(k-1) 

 2  



σ

2
p +  σ

2
µ(k-1)   

 (51)

where c2  is the normalizing constant. Substituting Equation (21) into (51) yields

µ(vk) = 
1
c3

 exp







-
[Ha(k|k-1)vk - (z(k) -Hb(k|k-1))]2

2S(k)  exp





-

 v
2
k - 2 mµ(k-1) vk + m

2
µ(k-1) 

 2  



σ

2
p +  σ

2
µ(k-1)   
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
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
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 (55)

Completing the square we obtain Equation (36). Proof is complete.
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Figure 1- The ensemble statistical results, over 100 Monte Carlo runs, for a
conventional IMM with three diffusion models (or velocity biases), namely  [-10 0 10].

Note that there is an obvious bias in the result.



Figure 2- The ensemble statistical results for 100 Monte Carlo runs of the
continuum model filter. There is no bias in the result.

Table 1:  RMS error value for both algorithms the continuum model algorithm and
the IMM

Algorithm RMS

Continuum Model

Kalman Filter
.25

Interacting Multiple Model

Filter (IMM)
1.66


